化学论文_深紫外波段苯的差分光学吸收光谱DOA
文章目录
引 言
1 DOAS技术
1.1 DOAS原理
1.2 测量系统
2 C6H6反演波段的选取
2.1 C6H6的吸收截面及干扰气体成分的吸收重叠影响
2.2 反演波段的选择
3 苯的实验室样气测量
4 外场实验及实验结果
5 结 论
文章摘要:取代基通过取代苯环上的H原子形成不同苯系物(苯、甲苯、二甲苯等),其共有结构苯环上的不固定π键电子受到激发,使得苯系物在紫外波段240~280 nm具有明显的特征吸收结构,鉴于此大气中的苯及相关的苯系物可以通过差分光学吸收光谱(DOAS)方法来进行定量,但采用该波段测量需要考虑以下问题:首先是氧气(O2)的吸收干扰问题,苯(C6H6)在该波段的吸收截面与O2在243~287 nm Herzzberg带相互重叠,且O2的特征光谱结构随O2的浓度不同而变化,导致O2的吸收光学密度与O2的浓度不成线性关系。其次,苯系物结构上的相似性使其在紫外波段的特征吸收结构差别较小并且相互重叠,从而对C6H6的拟合产生干扰。此外,除了O2和苯系物以外,还有臭氧(O3)、二氧化硫(SO2)等干扰。C6H6在195~208 nm的深紫外波段具有较大的吸收截面(2.417×10-17 cm2·molecule-1),为240~260 nm处截面大小(2.6×10-18 cm2·molecule-1)的9倍左右,针对C6H6在深紫外195~208 nm波段的吸收特征,开展便携式DOAS定量方法研究,采用该波段进行C6H6的光谱定量分析并应用到实际的外场观测。通过建立C6H6与干扰气体SO2,氨(NH3),二硫化碳(CS2)和一氧化氮(NO)的差分吸收截面的二维相关性矩阵,获取C6H6光谱定量的最优反演波段。通过开展实验室条件下C6H6, SO2和NH3不同浓度配比的混气实验对195~208 nm波段反演C6H6的效果进行评估。实验结果显示,采用195~208 nm波段进行光谱反演的探测限为17.6μg·m-3,光谱反演浓度与理论浓度的相对测量误差均小于5%且RSD(相对标准偏差)小于3%,同时与240~260 nm波段反演结果进行对比,相对误差小于5%。在外场实际情况下,利用便携式DOAS系统获取190~300 nm的大气测量光谱,通过DOAS方法解析并结合GPS信息,获得了某化工园区C6H6的污染浓度分布,实验结果表明采用195~208 nm深紫外波段同样能适用于对C6H6的光谱定量,与240~260 nm波段反演结果进行对比,二者的相关性达到了0.98且相对误差小于10%。
文章关键词:
项目基金:文章来源:《大气与环境光学学报》 网址: http://www.dqyhjgxxb.cn/qikandaodu/2021/1106/566.html